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Abstract. A floating Wigner crystal differs from the standard one by a spatial averaging over positions of
the Wigner-crystal lattice. It has the same internal structure as the fixed crystal, but contrary to it, takes
into account rotational and/or translational symmetry of the underlying jellium background. We study
properties of a floating Wigner molecule in few-electron spin-polarized quantum dots, and show that the
floating solid has the lower energy than the standard Wigner crystal with fixed lattice points. We also
argue that internal rotational symmetry of individual dots can be broken in arrays of quantum dots, due
to degenerate ground states and inter-dot Coulomb coupling.

PACS. 73.20.Qt Electron solid – 73.21.La Quantum dots – 73.22.Gk Broken symmetry phases

At sufficiently low densities a system of interacting elec-
trons on a uniform positive background forms a correlated
Wigner-crystal state. The idea of an electron crystal was
originally proposed by Wigner [1], and then extensively
studied in three- [2–14] and two-dimensional [15–24] (2D)
electron systems (experimental realizations are electrons
on liquid helium [25] and semiconductor [26] surfaces).
Recently, an interest aroused to the formation and prop-
erties of Wigner molecules in semiconductor quantum dots
– zero-dimensional systems with a finite number N of 2D
electrons [27–36].

A standard Wigner-crystal ground-state trial wave
function ΨWC(r1, r2, . . . , rN ) (for a fully-spin-polarized
electron system) has the form of a Slater determinant
constructed from single-particle orbitals ψ(r) centered at
points, corresponding to equilibrium positions of classical
particles,

ΨWC({ri}, {Rj}) =
1√
N !

det
N
|ψ(ri −Rj)| . (1)

In a circular parabolic quantum dot with a small num-
ber N (≤ 8) of 2D electrons the vectors Rj form sym-
metric polygonal configurations with Nc electrons in the
center [27,28],

Rj = R(cos θj , sin θj), θj = 2π(j − 1)/N,
j = 1, . . . , N, N ≤ 5,

R1 = 0, Rj = R(cos θj , sin θj),
θj = 2π(j − 2)/(N − 1),
j = 2, . . . , N, N = 6, 7, 8, (2)

a Present address: Max-Planck-Institut für Festkörper-
forschung, Heisenbergstr. 1, 70569 Stuttgart, Germany
e-mail: s.mikhailov@fkf.mpg.de

Nc = 0 at N ≤ 5, and Nc = 1 at 6 ≤ N ≤ 8 (for quantum
dots with more particles see examples of classical config-
urations in [27,28]). In a macroscopic 2D electron system
vectors Rj form a triangular lattice [16,17],

{Rj} ∼ a
(
l1 + l2/2,

√
3l2/2

)
, nsa

2 = 2/
√

3, (3)

with the period a corresponding to the average area den-
sity of 2D electrons ns (l1 and l2 are integer).

The equilibrium classical configurations (2, 3) are usu-
ally considered to be fixed with respect to some fixed ex-
ternal reference frame. This leads, in fact, to a violation of
the rotational (in circular quantum dots) and translational
(in infinite 2D systems) symmetry of the ground state,
and results in an angular- and position-dependent ground-
state electron density. The trial many-body wave function
(1) in the dots (in an infinite 2D electron system) is not the
eigenfunction of the total angular momentum L̂tot (of the
total momentum P̂tot), although the Hamiltonian has the
rotational (translational) symmetry and commutes with
the corresponding operators (here L̂tot ≡ L̂totz , where z-
axis is perpendicular to the plane of the 2D system).

The symmetries can be restored in (1) by averaging
over the corresponding positions of the vectors Rj . Such
a floating solid was discussed in the literature in connec-
tion with other many-body problems, see e.g. [37,38]. In
this paper we discuss some general properties of a float-
ing Wigner molecule in a circular parabolic quantum dot,
and of a floating Wigner crystal in a macroscopic 2D elec-
tron system. We show that {Rj}-averaged Wigner-crystal
wave functions can be constructed as eigenfunctions of the
total angular/total momentum operators, and that these
eigenstates possess the symmetry of the Hamiltonian. We
perform specific calculations for the energy of few-electron



118 The European Physical Journal B

quantum dots, in the fixed and floating Wigner-crystal
states, and show that the {Rj}-averaging does lead to
an essential reduction of the variational ground-state en-
ergy. For two-, three- and four-electron parabolic quantum
dots we compare our variational results with exact results
available in the literature. We also show that the internal
rotational symmetry of the wave functions in circular dots
can be broken if the ground state is degenerate with re-
spect to the total angular momentum L: a superposition
of eigenfunctions with different L breaks the symmetry
without increasing the energy of the state. We argue that
this leads to phase transitions in quantum-dot arrays with
spontaneous symmetry breaking.

Consider a circular N -electron parabolic quantum dot.
Let Rα

j = Rj(cos(θj+α), sin(θj+α)) be a set of vectors ro-
tated around the origin by an angle α with respect to (2).
Consider a function

ΨL({ri}) =
∫ π

−π

dα
2π

eiLαΨWC({ri}, {Rα
j }), (4)

obtained from (1) by averaging over α with the weight
function eiLα, and labeled by an arbitrary integer L. The
functions (4) have the same internal structure as (1), so
that electron-electron correlations are taken into account
at the same level of accuracy, and satisfy the eigenvalue
equation

L̂totΨL({ri}) = ~LΨL({ri}), (5)

with L being the total angular momentum quantum num-
ber. The fixed Wigner-crystal wave function (1) can be
presented in the form of an infinite sum of eigenfunc-
tions ΨL with all possible values of L,

ΨWC({ri}, {Rj}) =
∞∑

L=−∞
ΨL({ri}). (6)

These results obviously remain valid if the trial wave func-
tions are multiplied by additional Jastrow factors (see
e.g. [18,22]) which depend only on relative coordinates
of electrons.

For a quantum dot with N ≤ 8 electrons we calculate
expectation values E = 〈Ψ |Ĥ|Ψ〉/〈Ψ |Ψ〉 of the Hamilto-
nian Ĥ in the states (4) and (1), and directly compare the
energies EL and EWC of the floating and fixed Wigner-
molecule states. The Hamiltonian of the dots has the form

Ĥ =
N∑
i=1

(
p̂2
i

2m?
+
m?ω2

0r2
i

2

)
+

1
2

N∑
i6=j=1

e2

κ|ri − rj |
, (7)

where m? is the effective mass of 2D electrons, κ is the
dielectric constant of the host semiconductor, and ω0

characterizes the confinement. For the single-particle or-
bitals ψ(r) we take Gaussians

ψ(r) =
1√
πl

exp
(
− r2

2l2

)
, (8)

with the width l being either equal to the oscillator length
l0 =

√
~/m?ω0, or considered as a variational parameter.

For the vectors Rj we assume the classical equilibrium
configurations (2).

Due to the symmetry of configurations (2) not all val-
ues of L are allowed in equation (4). For instance, if N = 2
and the system is fully spin-polarized (the total spin is
S = N/2 = 1) the number L can take only odd values; oth-
erwise the integral (4) vanishes. For the ground state it is
reasonable to assume the smallest possible value of the to-
tal angular momentum, so that we get L = ±1. As known
from exact-diagonalization calculations [39], at S = 1 the
ground state of a two-electron quantum dot has indeed
the total angular momentum |L| = 1. Similarly, if N = 3,
allowed values of L are 0,±3,±6, . . . , and in the ground
state of the fully polarized (S = 3/2) three-electron dot we
have L = 0. This also agrees with exact-diagonalization
calculations [36]. In general, for N -electron dots with N
from 2 to 8, the total spin S = N/2, and classical configu-
rations (2), we get the following ground-state total angular
momenta

L =(N −Nc)/2, if (N −Nc) = even,
L =0, if (N −Nc) = odd, (9)

where Nc = 0, if N ≤ 5, and Nc = 1, if 6 ≤ N ≤ 8.
The energies EL (with L from Eq. (9)) and EWC

have been calculated with the help of general formulas
obtained in reference [40]. Figure 1 shows the difference
(EWC−Eexact), (EL−Eexact) between the energies of the
fixed and floating variational Wigner-crystal states and
exact-diagonalization results from references [36,39,41],
for N = 2, 3, and 4 spin-polarized electrons, S = N/2.
Figure 2 exhibits the difference (EWC −EL) between the
energies of the fixed and floating Wigner-molecule states,
for parabolic quantum dots with N from 2 to 8 electrons.
One sees that in all the cases the Rj-averaging leads to an
essential improvement (by about 0.2–0.3 ~ω0) of the varia-
tional ground state energy, and that in general the energy
gain increases with the number of particles in the dots.
Another (quite natural) finding is that for ΨL states with
zero total angular momentum (four upper thick curves in
Fig. 2) the energy gain is substantially larger than for the
states with L 6= 0 (three lower thin curves). The differ-
ence between the variational and exact ground-state ener-
gies is reduced by a factor of ≈ 2 in the two-, three-, and
four-electron quantum dots, Figure 1, due to the floating
version of the Wigner-molecule trial wave function.

The states ΨL are eigenstates of the total angular mo-
mentum L̂tot, equation (5), and the density of electrons
nL(r) in these states does not depend on the angular co-
ordinate, nL(r, θ) = nL(r). However, if the ground state is
degenerate, as it is the case, for instance, at L 6= 0 (N = 2,
4, and 7), one can construct solutions

Ψmixed = CLΨL + C−LΨ−L, (10)

which have the same (ground-state) energy Emixed =
E±L, but an angular-dependent density nmixed(r, θ). A
possible mixed state is (ΨL + Ψ−L)/

√
2 with 〈L〉 = 0.
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Fig. 1. Energy difference EWC − Eexact (curves labeled as
“fixed”) and EL − Eexact (curves labeled as “floating”) for
parabolic quantum dots with (a) N = 2, (b) N = 3 and
(c) N = 4 spin-polarized electrons, as a function of the

Coulomb interaction parameter l0/aB =
p
e2/aB~ω0 (energy

unit is ~ω0, aB is the effective Bohr radius). For both trial
wave functions the curves without and with optimization over
the variational parameter l are shown (the curves labeled as
“l = l0” and “l varied” respectively). Exact-diagonalization
results are taken from reference [39] (N = 2), reference [36]
(N = 3), and reference [41] (N = 4).
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Fig. 2. Energy difference EWC−EL, in units ~ω0, as a function
of the interaction parameter l0/aB, for parabolic quantum dots
with N = 2 to 8. For both trial wave functions optimization
over the variational parameter l have been performed.

Fig. 3. Possible phase transition to a broken-symmetry state
in an array of Coulomb-coupled quantum dots. It is assumed
that there are two electrons in each dot (thin circles show the
maxima of the electron density), and that electron spins are
polarized.

Such broken-symmetry ground states can thus exist in a
circularly symmetric quantum dot, depending on initial
conditions. In a single dot the energies of symmetric and
broken-symmetric solutions are the same, but in the pres-
ence of a small perturbation the symmetry-broken state
may have the lower energy (an evident example is a cir-
cular dot with “disorder”, e.g. with an asymmetrically lo-
cated impurity). Consider for instance an array of circular
dots with a weak inter-dot Coulomb coupling, and assume
that each dot contains two spin-polarized electrons (no
tunneling is assumed between the dots). Then the struc-
ture schematically shown in Figure 3 will obviously have
the lower energy than the state with angular independent
density in each dot. A weak inter-dot Coulomb interaction
in arrays of dots can thus lead to phase transitions with a
spontaneously broken phase.

Results presented in formulas (4–6) can be easily gen-
eralized to the case of other electron systems on the
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jellium background. For example, for an infinite 2D elec-
tron system (with periodic boundary conditions) the float-
ing Wigner crystal wave function can be written as

ΨK({ri}) =
∫

daeiK·aΨWC({ri}, {Rj + a}), (11)

where the integral is taken over the (large) area of a sam-
ple. The functions (11) are the eigenfunctions of P̂tot,

P̂totΨK({ri}) = ~KΨK({ri}), (12)

with ~K being the total momentum quantum number.
The fixed Wigner crystal wave function (1) is expanded
in terms of ΨK as

ΨWC({ri}, {Rj}) =
1

(2π)2

∫
dKΨK({ri}). (13)

The floating Wigner crystal wave functions (11) give the
position-independent density of 2D electrons. However, if
the ground state is degenerate with respect to K, a super-
position of such degenerate ground states can again lead
to a modulated density.

To summarize, we have studied some general prop-
erties of a floating Wigner crystal in parabolic quantum
dots and other electron systems. In few-electron dots the
rotationally-invariant floating solid was proved to have a
substantially lower energy than the fixed Wigner molecule
given by the trial wave function of equation (1). In arrays
of quantum dots the inter-dot interaction may lead to a
phase transition to the ground state with broken rota-
tional symmetry in individual dots.

The work was supported by the Deutsche Forschungsgemein-
schaft through the SFB 484. We thank Karl-Heinz Höck for
useful discussions.
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34. W. Häusler, Europhys. Lett. 49, 231 (2000)
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